

Matti T. Leppänen<sup>1</sup>, Stijn Baken<sup>2</sup>, Øyvind Garmo<sup>3</sup>, Sabina Hoppe<sup>4</sup>, Johanna Järvistö<sup>1</sup>, Graham Merrington<sup>5</sup>, Kuria Ndungu<sup>3</sup>, Siiri Perämäki<sup>6</sup>, Adam Peters<sup>5</sup>, Chris Schlekat<sup>7</sup>, Frank Van Assche<sup>8</sup> and Ari Väisänen<sup>6</sup>

<sup>1</sup>Finnish Environment Institute SYKE, Survontie 9A, FI-40500 Jyväskylä, Finland, <sup>2</sup>European Copper Institute, Avenue de Tervueren 168, 1150 Brussels, Belgium, <sup>3</sup>Norwegian Institute for Water Research, Gaustadalléen 2, NO-0349 Oslo, Norway, <sup>4</sup>ACES, Stockholm University, Svante Arrhenius väg 16, Stockholm, Sweden, 5wca, Brunel House, Faringdon, Oxfordshire SN7 7YR, UK, 6Dept. of Chemistry, University of Jyväskylä, Survontie 9C, FI-40500 Jyväskylä, Finland, <sup>7</sup>NiPERA, Durham, North Carolina, USA, <sup>8</sup>International Zinc Association, Avenue de Tervueren 168, 1150 Brussels, Belgium

E-mail: matti.t.leppaneni@ymparisto.fi

# Testing performance of biotic ligand models for Cu, Ni and Zn in Northern European water chemistries

- Bioavailability based Environmental Quality Standards require new approaches in the EU member states for metal compliance assessment in freshwater systems
- Biotic Ligand Models (BLMs) have been developed to predict metal bioavailability under different physico-chemical conditions of the water
- The models are based on chronic toxicity data and speciation modelling
- Regulatory jurisdictions need to select a model and set a framework for determining compliance
- Surface water chemistries in Northern Europe are often outside the validation ranges of the current models which complicates model selection and use
- The purpose of this project was to produce toxicity data performed in typical Fennoscandinavian water chemistries and to compare measured point estimates (EC10/ NOEC) to toxicity estimated by the BLM
- Consistency between predicted and measured toxicity would support the use of the BLM models in the Northern European conditions
- Inconsistency between modeled and measured toxicity would call for further toxicity testing and/or model development

#### **Materials and Methods**

- Seven surface water samples from Finland and Norway were spiked with either Cu, Ni or Zn and chronic toxicity was observed for Daphnia longispina (reproduction), Lymnaea stagnalis (growth) and/ or Pseudokirchneriella subcapitata (growth)
- Local invertebrate populations were applied in soft and acidic waters (Table)
- 28 measured vs. modelled EC10/NOEC estimates were produced
- EC10s were based on the nonlinear logistic curve (OECD 1997)
- The actual exposure metal concentrations were analyzed either by ICP-OES or ICP-MS
- WCA Environment (A. Peters) performed the species specific full BLM modelling based on the measured water chemistries

Table. Selected water chemistries for the test waters.

| Test waters   | рН  | DOC mg/<br>L | K mg/L | Ca mg/L | Na mg/L | Mg mg/L | CI mg/L | SO4 mg/<br>L |
|---------------|-----|--------------|--------|---------|---------|---------|---------|--------------|
| Atnsjøen      | 6,6 | 1,3          | 0,3    | 1       | 0,5     | 0,2     | 0,4     | 1            |
| Konnevesi     | 7,2 | 8,6          | 1,2    | 3,9     | 2,1     | 1,6     | 1,7     | 4,2          |
| Kontiolampi   | 4,8 | 19,4         | 0,8    | 2,6     | 6,4     | 0,6     | 7,9     | 3,3          |
| Kuorinka      | 6,5 | 2,1          | 1,1    | 2,5     | 1,1     | 0,9     | 1,8     | 6,7          |
| Säkkilänjärvi | 6,7 | 4,4          | 1,3    | 10,5    | 1,1     | 2,3     | 1,7     | 3,8          |
| Särkilampi    | 6   | 16,6         | 0,6    | 2,6     | 1,3     | 0,7     | 2,6     | 2,3          |
| Valkealampi   | 6,9 | 2,4          | 0,6    | 2,1     | 1,1     | 0,6     | 0,4     | 4,5          |



Figure 1. An example of toxicity data and model fitting. The growth of juvenile *L. stagnalis* snails after 3 weeks exposure to zinc. EC50 = 91 ± 5  $\mu g/L$ , EC10 = 61  $\mu g/L$ . NOEC = 69  $\mu g/L$ . LOEC = 104  $\mu g/L$ .



Figure 2. Comparison between test data based EC10/NOEC (y) and full BLM model based (x) EC10/NOEC estimates . All comparisons are for the matching species and no cross-species extrapolation was needed.

### **Results and Discussion**

- Establishing a new daphnid and snail culture using local populations was successful
- Feeding conditions were critical for successful growth of snails in experimental set up and allowed concentration-response modelling (Fig.1)
- All Ni and Zn daphnid and Ni snail effect point estimates generally followed the modelled estimates (2x difference accepted) (Fig. 2).
- Algae (for all metals, not shown) and snails (for Zn) were more sensitive than the BLM model estimated (Fig.2)
- The results corroborated nickel BLM model for daphnids and snails
- The reasons for algae and snail (for Zn) model deviations are unclear and require data checks and further testing before BLM model adjustments are considered as an option

### References

OECD 1997. Report of the final ring test of the Daphnia magna reproduction test. Series on Testing and Assessment No.6.

## Acknowledgements

The project was funded by the Nordic Council of Ministries, Finnish Environment Institute and the

international metal industry (NiPERA, IZA, ECI)